Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments.

Identifieur interne : 000B75 ( Main/Exploration ); précédent : 000B74; suivant : 000B76

A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments.

Auteurs : Xiaotao Bai [République populaire de Chine] ; Jianmei Xu [République populaire de Chine] ; Xuemin Shao [République populaire de Chine] ; Wenchun Luo [République populaire de Chine] ; Zhimin Niu [République populaire de Chine] ; Chengyu Gao [République populaire de Chine] ; Dongshi Wan [République populaire de Chine]

Source :

RBID : pubmed:31572409

Abstract

Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the GATs family in Populus species and characterized their functional evolution and divergence in a desert poplar species (Populus euphratica). We found that the GATs underwent genus-specific expansion via multiple whole-genome duplications in Populus species. The purifying selection were identified across those GATs evolution and divergence in poplar diversity, except two paralogous PeuGAT2 and PeuGAT3 from P. euphratica. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both PeuGAT genes were functionally characterized in Arabidopsis and poplar, respectively. The overexpression of PeuGAT3 increased the thickness of xylem cells walls in both Arabidopsis and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that PeuGAT3 could be an attractive candidate gene for engineering trees with improved brown-rot resistance.

DOI: 10.3389/fpls.2019.01083
PubMed: 31572409
PubMed Central: PMC6749060


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of
<i>Populus euphratica</i>
to Adverse Environments.</title>
<author>
<name sortKey="Bai, Xiaotao" sort="Bai, Xiaotao" uniqKey="Bai X" first="Xiaotao" last="Bai">Xiaotao Bai</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Jianmei" sort="Xu, Jianmei" uniqKey="Xu J" first="Jianmei" last="Xu">Jianmei Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Xuemin" sort="Shao, Xuemin" uniqKey="Shao X" first="Xuemin" last="Shao">Xuemin Shao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niu, Zhimin" sort="Niu, Zhimin" uniqKey="Niu Z" first="Zhimin" last="Niu">Zhimin Niu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Chengyu" sort="Gao, Chengyu" uniqKey="Gao C" first="Chengyu" last="Gao">Chengyu Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31572409</idno>
<idno type="pmid">31572409</idno>
<idno type="doi">10.3389/fpls.2019.01083</idno>
<idno type="pmc">PMC6749060</idno>
<idno type="wicri:Area/Main/Corpus">000683</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000683</idno>
<idno type="wicri:Area/Main/Curation">000683</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000683</idno>
<idno type="wicri:Area/Main/Exploration">000683</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of
<i>Populus euphratica</i>
to Adverse Environments.</title>
<author>
<name sortKey="Bai, Xiaotao" sort="Bai, Xiaotao" uniqKey="Bai X" first="Xiaotao" last="Bai">Xiaotao Bai</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Jianmei" sort="Xu, Jianmei" uniqKey="Xu J" first="Jianmei" last="Xu">Jianmei Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Xuemin" sort="Shao, Xuemin" uniqKey="Shao X" first="Xuemin" last="Shao">Xuemin Shao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niu, Zhimin" sort="Niu, Zhimin" uniqKey="Niu Z" first="Zhimin" last="Niu">Zhimin Niu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Chengyu" sort="Gao, Chengyu" uniqKey="Gao C" first="Chengyu" last="Gao">Chengyu Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the
<i>GATs</i>
family in
<i>Populus</i>
species and characterized their functional evolution and divergence in a desert poplar species (
<i>Populus euphratica</i>
). We found that the
<i>GATs</i>
underwent genus-specific expansion
<i>via</i>
multiple whole-genome duplications in
<i>Populus</i>
species. The purifying selection were identified across those
<i>GATs</i>
evolution and divergence in poplar diversity, except two paralogous
<i>PeuGAT2</i>
and
<i>PeuGAT3</i>
from
<i>P. euphratica</i>
. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both
<i>PeuGAT</i>
genes were functionally characterized in
<i>Arabidopsis</i>
and poplar, respectively. The overexpression of
<i>PeuGAT3</i>
increased the thickness of xylem cells walls in both
<i>Arabidopsis</i>
and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that
<i>PeuGAT3</i>
could be an attractive candidate gene for engineering trees with improved brown-rot resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31572409</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of
<i>Populus euphratica</i>
to Adverse Environments.</ArticleTitle>
<Pagination>
<MedlinePgn>1083</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01083</ELocationID>
<Abstract>
<AbstractText>Novel genes provide important genetic resource for organism innovation. However, the evidence from genetic experiment is limited. In plants, γ-aminobutyric acid (GABA) transporters (GATs) primarily transport GABA and further involve in plant growth, development, and response to various stresses. In this study, we have identified the
<i>GATs</i>
family in
<i>Populus</i>
species and characterized their functional evolution and divergence in a desert poplar species (
<i>Populus euphratica</i>
). We found that the
<i>GATs</i>
underwent genus-specific expansion
<i>via</i>
multiple whole-genome duplications in
<i>Populus</i>
species. The purifying selection were identified across those
<i>GATs</i>
evolution and divergence in poplar diversity, except two paralogous
<i>PeuGAT2</i>
and
<i>PeuGAT3</i>
from
<i>P. euphratica</i>
. The both genes arose from a tandem duplication event about 49 million years ago and have experienced strong positive selection, suggesting that the divergence in PeuGAT3 protein function/structure might define gene function better than in expression pattern. Both
<i>PeuGAT</i>
genes were functionally characterized in
<i>Arabidopsis</i>
and poplar, respectively. The overexpression of
<i>PeuGAT3</i>
increased the thickness of xylem cells walls in both
<i>Arabidopsis</i>
and poplar and enhanced the lignin content of xylem tissues and the proline accumulation in poplar leaves, all of which may improve tolerance of salt/drought stress in desert poplars. Our findings help clarify the genetic mechanisms underpinning high tolerance in desert poplars and suggest that
<i>PeuGAT3</i>
could be an attractive candidate gene for engineering trees with improved brown-rot resistance.</AbstractText>
<CopyrightInformation>Copyright © 2019 Bai, Xu, Shao, Luo, Niu, Gao and Wan.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Xiaotao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Jianmei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Xuemin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Wenchun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niu</LastName>
<ForeName>Zhimin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Chengyu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Dongshi</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">adaptive evolution</Keyword>
<Keyword MajorTopicYN="N">functional divergence</Keyword>
<Keyword MajorTopicYN="N">novel gene</Keyword>
<Keyword MajorTopicYN="N">poplars</Keyword>
<Keyword MajorTopicYN="N">γ-aminobutyric acid transporters</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31572409</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01083</ArticleId>
<ArticleId IdType="pmc">PMC6749060</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Oct 11;449(7163):677-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 May;23(5):1056-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Dec 1;34(12):3299-3302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29029172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2005 Aug;208(Pt 15):2819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2010;8:e0131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008 Nov 04;8:307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2010 Oct;39(4):949-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20204435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):632-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Oct;39(10):1256-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17828263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2015 Sep 18;6(3):901-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26393655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Nov;19(11):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Feb;196(2):481-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22366488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Apr;31(4):872-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(4):523-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Aug 31;12(10):692-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2013 Apr 9;81:112-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23063722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(2):RESEARCH0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2017 Aug 3;8(8):e2965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28771231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Mar;27(3):139-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Mar;9(3):110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2012;10(12):e1001446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23239941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2016 Dec 01;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Feb;17(2):451-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Sep 30;238(1):135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Feb;29(2):395-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28123105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Nov;4(11):446-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10529826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Apr 2;260(5104):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7682012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):377-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 29;6:785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Bai, Xiaotao" sort="Bai, Xiaotao" uniqKey="Bai X" first="Xiaotao" last="Bai">Xiaotao Bai</name>
</noRegion>
<name sortKey="Gao, Chengyu" sort="Gao, Chengyu" uniqKey="Gao C" first="Chengyu" last="Gao">Chengyu Gao</name>
<name sortKey="Luo, Wenchun" sort="Luo, Wenchun" uniqKey="Luo W" first="Wenchun" last="Luo">Wenchun Luo</name>
<name sortKey="Niu, Zhimin" sort="Niu, Zhimin" uniqKey="Niu Z" first="Zhimin" last="Niu">Zhimin Niu</name>
<name sortKey="Shao, Xuemin" sort="Shao, Xuemin" uniqKey="Shao X" first="Xuemin" last="Shao">Xuemin Shao</name>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<name sortKey="Xu, Jianmei" sort="Xu, Jianmei" uniqKey="Xu J" first="Jianmei" last="Xu">Jianmei Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31572409
   |texte=   A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31572409" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020